Stolen Rubies
One of the kingdom’s most prosperous merchants has been exposed for his corrupt dealings. Nearly all of his riches are invested in a collection of 30 exquisite Burmese rubies, and the crowd in the square is clamoring for their confiscation to reimburse his victims. But the scoundrel and his allies at court have made a convincing case that at least some of his wealth was obtained legitimately, and through good service to the crown. The king ponders for a minute and announces his judgment. Because there’s no way to know which portion of the rubies were bought with ill-gotten wealth, the fine will be determined through a game of wits between the merchant and the king’s most clever advisor – you.
You’re both told the rules in advance. The merchant will be allowed to discreetly divide his rubies among three boxes, which will then be placed in front of you. You will be given three cards, and must write a number between 1 and 30 on each, before putting a card in front of each of the boxes. The boxes will then all be opened. For each box, you will receive exactly as many rubies as the number written on the corresponding card, if the box has that many. But if your number is greater than the number of rubies actually there, the scoundrel gets to keep the entire box.
The king puts just two constraints on how the scoundrel distributes his rubies. Each box must contain at least two rubies and one of the boxes must contain exactly six more rubies than another — but you won’t know which boxes those are. After a few minutes of deliberation, the merchant hides the gems, and the boxes are brought in front of you.
Which numbers should you choose in order to guarantee the largest possible fine for the scoundrel and the greatest compensation for his victims?
Solution