Credit for this problem goes to The Riddler. Thanks!

## Prison with Levers

From “The Riddler”:

From Joshua Herbison, a classic puzzle of logical jailbreak:

One hundred prisoners are put into 100 completely isolated cells, numbered 1 to 100. Once they are in their cells, they cannot communicate with each other in any way. They are taken by the warden one at a time, but in no particular order, to a special room, Cell 0, in which there are two levers. As the prisoners enter the room, each lever is either up or down, but the levers’ starting positions are unknown. When in the room, a prisoner must flip exactly one of the levers. At any point, any prisoner may declare to the warden that all of the prisoners have been to the room. (The warden will take prisoners to the room indefinitely until someone makes a guess.) If the prisoner is correct, they are all released. If not, they are all executed.

Knowing these rules, what strategy can the prisoners devise beforehand that will guarantee their release? How many trips to Cell 0 will it take on average before they are released?